skip to main content


Search for: All records

Creators/Authors contains: "Kopparapu, Ravi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Planets in synchronous rotation around low-mass stars are the most salient targets for current ground- and space-based missions to observe and characterize. Such model calculations can help to prioritize targets for observation with current and future missions; however, intrinsic differences in the complexity and physical parameterizations of various models can lead to different predictions of a planet’s climate state. Understanding model differences is necessary if such models are to guide target selection and aid in the analysis of observations. This paper presents a protocol to intercompare models of a hypothetical planet with a 15-day synchronous rotation period around a 3000 K blackbody star across a parameter space of surface pressure and incident instellation. We conduct a sparse sample of 16 cases from a previously published exploration of this parameter space with the ExoPlaSim model. By selecting particular cases across this broad parameter space, the SAMOSA intercomparison will identify areas where simpler models are sufficient, as well as areas where more complex GCMs are required. Our preliminary comparison using ExoCAM shows general consistency between the climate state predicted by ExoCAM and ExoPlaSim except in regions of the parameter space most likely to be in a steam atmosphere or incipient runaway greenhouse state. We use this preliminary analysis to define several options for participation in the intercomparison by models of all levels of complexity. The participation of other GCMs is crucial to understand how the atmospheric states across this parameter space differ with model capabilities.

     
    more » « less
  2. Abstract We validate the planetary nature of an ultra-short-period planet orbiting the M dwarf KOI-4777. We use a combination of space-based photometry from Kepler, high-precision, near-infrared Doppler spectroscopy from the Habitable-zone Planet Finder, and adaptive optics imaging to characterize this system. KOI-4777.01 is a Mars-sized exoplanet ( R p = 0.51 ± 0.03 R ⊕ ) orbiting the host star every 0.412 days (∼9.9 hr). This is the smallest validated ultra-short period planet known and we see no evidence for additional massive companions using our HPF RVs. We constrain the upper 3 σ mass to M p < 0.34 M ⊕ by assuming the planet is less dense than iron. Obtaining a mass measurement for KOI-4777.01 is beyond current instrumental capabilities. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract We present the occurrence rates for rocky planets in the habitable zones (HZs) of main-sequence dwarf stars based on the Kepler DR25 planet candidate catalog and Gaia-based stellar properties. We provide the first analysis in terms of star-dependent instellation flux, which allows us to track HZ planets. We define η ⊕ as the HZ occurrence of planets with radii between 0.5 and 1.5 R ⊕ orbiting stars with effective temperatures between 4800 and 6300 K. We find that η ⊕ for the conservative HZ is between (errors reflect 68% credible intervals) and planets per star, while the optimistic HZ occurrence is between and planets per star. These bounds reflect two extreme assumptions about the extrapolation of completeness beyond orbital periods where DR25 completeness data are available. The large uncertainties are due to the small number of detected small HZ planets. We find similar occurrence rates between using Poisson likelihood Bayesian analysis and using Approximate Bayesian Computation. Our results are corrected for catalog completeness and reliability. Both completeness and the planet occurrence rate are dependent on stellar effective temperature. We also present occurrence rates for various stellar populations and planet size ranges. We estimate with 95% confidence that, on average, the nearest HZ planet around G and K dwarfs is ∼6 pc away and there are ∼4 HZ rocky planets around G and K dwarfs within 10 pc of the Sun. 
    more » « less
  6. null (Ed.)